MAKING QUANTUM STATES OF LIGHT

1. Photons
2. Biphotoons
3. Squeezed states
4. Beam splitter
5. Conditional measurements
Beam splitter transformation
(Heisenberg picture)

• Quadrature transformation

\[
\begin{pmatrix}
\hat{a}_1 \\
\hat{a}_2
\end{pmatrix} =
\begin{pmatrix}
t & r \\
-r & t
\end{pmatrix}
\begin{pmatrix}
\hat{a}_1' \\
\hat{a}_2'
\end{pmatrix}
\]

where \(t^2 \) is the beam splitter transmission, \(r^2 \) reflection. \(|t|^2 + |r|^2 = 1\).

• If \(t \) and \(r \) are real, we can assign \(t = \cos \theta; \ r = \sin \theta; \)

\[
\begin{pmatrix}
\hat{a}_1 \\
\hat{a}_2
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
\hat{a}_1' \\
\hat{a}_2'
\end{pmatrix}
\]

Also valid for positions, momenta

\[
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
x'_1 \\
x'_2
\end{pmatrix}, \quad
\begin{pmatrix}
p_1 \\
p_2
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
p'_1 \\
p'_2
\end{pmatrix}
\]

→ Beam splitter transformation = rotation in the phase space ⇒ entanglement

Problem: Show that a beam splitter acting on a pair of coherent states will generate a pair of coherent states
Example:
Einstein-Podolsky-Rosen state

- **State preparation**
 - Overlap X-squeezed $(\langle \delta x_1^2 \rangle < 1/2)$ and P-squeezed $(\langle \delta p_2^2 \rangle < 1/2)$ vacuum states on a symmetric beam splitter.
 - Beam splitter transformation:
 \[
 \begin{pmatrix}
 X_1 \\
 X_2
 \end{pmatrix}
 \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix}
 X_2 - X_1 \\
 X_2 + X_1
 \end{pmatrix};
 \begin{pmatrix}
 P_1 \\
 P_2
 \end{pmatrix}
 \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix}
 P_2 - P_1 \\
 P_2 + P_1
 \end{pmatrix}
 \]
 - After beam splitter:
 \[
 \langle \delta(x_1 - x_2)^2 \rangle < 1/2; \langle \delta(p_1 + p_2)^2 \rangle < 1/2
 \]
 - Both positions and momenta are nonclassically correlated.
 - Entangled state generated!
 - This states approximates the original Einstein-Podolsky-Rosen state.
By the way:
the original EPR paradox

The ideal Einstein-Podolsky-Rosen state

- In position representation: \(\Psi_{\text{EPR}}(x_1, x_2) = \delta(x_1 - x_2) \)
- In momentum representation: \(\Psi_{\text{EPR}}(p_1, p_2) = \delta(p_1 + p_2) \)

Problem: obtain the position representation wave function from the momentum representation.

If shared between Alice and Bob:

- If Alice measures position \(x_1 \)
 \(\rightarrow \) Bob receives a position eigenstate \(|x_2\rangle = |x_1\rangle \)
- If Alice measures momentum \(p_1 \)
 \(\rightarrow \) Bob receives a momentum eigenstate \(|p_2\rangle = |-p_1\rangle \)

Alice can create two mutually incompatible physical realities at a remote location

Theory: Einstein, Podolsky, Rosen, PRA **47**, 777 (1935)
Experiment: Z.Y.Ou et al., PRL 68, 3663 (1992)
Beam splitter transformation (Schrödinger picture)

- Photon number transformation

\[|m,n\rangle \rightarrow \sum_{j,k=0}^{m,n} \sqrt{(j+k)!(m+n-j-k)!} \begin{pmatrix} m \\ j \end{pmatrix} \begin{pmatrix} n \\ k \end{pmatrix} (-1)^k t^{n+j-k} r^{m-j+k} |m+n-j-k,j+k\rangle \]

- Simplest example: splitting a photon

\[|1\rangle \rightarrow t |1\rangle_A |0\rangle_B - r |0\rangle_A |1\rangle_B \]
Example: Tomography of a dual-rail qubit

- Photon hits a beam splitter → a two-mode qubit is generated
 \[|1\rangle \rightarrow t|1\rangle_A|0\rangle_B - r|0\rangle_A|1\rangle_B \]
- Measure quadratures \(X_A \) and \(X_B \) via homodyne detectors
- Phase/dependent quadrature statistics → state reconstruction

Example: Tomography of a dual-rail qubit (…continued)

- Probability distributions $\text{pr}(X_A, X_B)$
 - Serve as marginal distributions for the 4-D Wigner function
 - Entanglement \rightarrow Nonclassical, phase-dependent correlations

\[\theta_A - \theta_B = 0 \quad \quad \theta_A - \theta_B = \frac{\pi}{2} \quad \quad \theta_A - \theta_B = \pi \]

- Probability distributions $\text{pr}(X_A, X_B)$ for all θ_A, θ_B
 \rightarrow quantum state reconstruction
Why do we see such distributions?

- If no beam splitter is present

$|1\rangle$ → $\theta_A - \theta_B$

$|0\rangle$ → X_{θ_A}, X_{θ_B}

- Alice measures the single-photon state, Bob measures the vacuum state
- Measurements are uncorrelated → distributions are uncorrelated
- No entanglement
- No information about relative phase $\theta_A - \theta_B$
Why do we see such distributions?

- If beam splitter is present

\[
|1\rangle \quad |0\rangle
\]

- Alice and Bob measure the same quadrature \((\theta_A - \theta_B = 0 \text{ or } \pi)\)
 \(\rightarrow\) uncorrelated distribution rotates by 45°
- Alice and Bob measure different quadratures \((\theta_A - \theta_B = \pi/2)\)
 \(\rightarrow\) distribution remains uncorrelated
Tomography of an optical qubit

Results

- Density matrix
 - Serve as marginal distributions for the 4-D Wigner function
 - Entanglement \rightarrow Nonclassical, phase-dependent correlations

First complete (not postselected) reconstruction of an optical qubit
Another example: Hong-Ou-Mandel dip

- Two photons "colliding" on a beam splitter will stick together

\[|1,1\rangle \rightarrow (|2,0\rangle - |0,2\rangle)/\sqrt{2} \]

- Hong-Ou-Mandel effect: correlation count in the beam splitter output vanishes when the two photons arrive simultaneously.

Hong, Ou, Mandel, PRL 59, 2044 (1987)
Beam splitter model of absorption

- The problem
 - A quantum state of light propagates through an attenuator. What is the transmitted state?

\[|\psi_{in}\rangle \quad \hat{\rho}_{out} = ? \]
Beam splitter model of absorption

• **The solution**
 - Replace the absorber with a beam splitter.
 - The second input is vacuum

\[|\psi_{in}\rangle \]

\[|\Psi\rangle = \hat{B} |\psi_{in}\rangle |0\rangle \]

• Beam splitter output \(|\Psi\rangle\) may be entangled
• Mode 2 in the beam splitter output is lost
• To find \(\hat{\rho}_{out}\), trace over the lost mode in the beam splitter output

\[\hat{\rho}_{out} = \text{Tr}_2 |\Psi\rangle\langle\Psi| \]
Beam splitter model of absorption

- **The solution**
 - Replace the absorber with a beam splitter.
 - The second input is vacuum

\[
|\psi_{in}\rangle
\]

\[
|0\rangle
\]

\[
|\Psi\rangle = \hat{B}|\psi_{in}\rangle|0\rangle
\]

- **In terms of Wigner functions**
 - Beam splitter input Wigner function: \(W_{|\psi\rangle|0\rangle} = W_{|\psi\rangle}(x_1, p_1)W_{|0\rangle}(x_2, p_2) \).
 - To find the beam splitter output Wigner function \(W_{|\Psi\rangle}(x_1, p_1, x_2, p_2) \) apply phase-space rotation.
 - To find the Wigner function of mode 1, integrate over mode 2:

\[
W_{out}(x_1, p_1) = \int_{-\infty}^{+\infty} W_{|\Psi\rangle}(x_1, p_1, x_2, p_2) dx_2 dp_2.
\]
MAKING QUANTUM STATES OF LIGHT

1. Photons
2. Biphotons
3. Squeezed states
4. Beam splitter
5. Conditional measurements
Conditional preparation of a photon

- **Parametric down-conversion**
 - “Red” photons are always born in pairs
 - Photon detection in one emission channel
 → there must be a photon in the other channel as well

Not a single photon “on demand”

To date, this is the only method which provides a single photon with a high efficiency in a certain spatiotemporal mode
Schrödinger cat

What does it mean in optics?

• **Coherent superposition of two coherent states**

\[|\text{cat}_\pm\rangle = |\alpha\rangle \pm |-\alpha\rangle \]

• Useful for quantum teleportation quantum computation, and error correction

• Fundamentally important

Problem. Calculate these Wigner functions

• **Compare: incoherent superposition of two coherent states**

\[\hat{\rho} = |\alpha\rangle \langle \alpha| \pm |-\alpha\rangle \langle -\alpha| \]

• Boring, classical state
Schrödinger cat
How to make one?

• Easy for small α’s

\[
|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle + \alpha_2 |2\rangle + \alpha_3 |3\rangle + \ldots
\]

\[
|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle + \alpha_2 |2\rangle + \alpha_3 |3\rangle + \ldots
\]

\[
|\text{cat}_-\rangle = \alpha_1 |1\rangle - \alpha_3 |3\rangle + \ldots \quad \text{...just a squeezed single-photon state!}
\]

\[
\alpha = 2.1 \\
\alpha = 1.4 \\
\alpha = 0.7
\]
Schrödinger cat

How to make one?

- **Making a squeezed single-photon state**
 - Create a squeezed state
 \[|\psi_s\rangle = \beta_0 |0\rangle + \beta_2 |2\rangle + \beta_4 |4\rangle + \ldots \]
 - Subtract a photon
 \[\hat{a} |\psi_s\rangle = \sqrt{2} \beta_2 |1\rangle + 2 \beta_4 |3\rangle + \ldots \]

[Reproduced from A. Ourjoumtsev et al., Science 312, 83 (2006)]

K. Wakui et al., quant-ph/0609153
Summary to part 2: Classification of quantum state preparation methods

- **“On demand”:**
 State is readily available when required by the user
 Example: photon from a quantum dot

- **“Heralded”:**
 State produced randomly; system provides user with a classical signal when the state is produced
 Example: heralded single photon

- **“Postselected”:**
 State is not known to have been produced until it is detected
 Example: photon pair from a down-converter

Postselected + conditional measurement = Heralded (maybe)
Heralded + memory = On demand
QUANTUM REPEATER

and memory for light
Quantum cryptography: here and now

Secure communication up to 100-150 km
- Free space
- Optical fibers

Commercialization begins
- Id Quantique (Switzerland)
- MagiQ (Boston)
- BBN Technologies (Boston)

Metropolitan quantum communication networks
- Geneva
- Boston
- Vienna
- Calgary
Problems with quantum cryptography

- Preparation of single photons
 - Must ensure absence of two-photon pulses
- Losses in optical fibers
 - 0.2-0.3 dB/km: half of photons are lost over 10-15 kilometers.
 - Example: Dubai to Kish, 300 km, only 1 in 30,000,000 photons will reach destination
 - Can't use amplifiers
- "Dark counts" of detectors
 - Sometimes a photon detector will "click" without a photon
 - Dark clicks cause errors
 - Too many errors → can't detect eavesdropping
Suppose Alice wants to send a photon to Bob...

The photon is likely to get lost on its way
Quantum relay

• If Alice and Bob shared an entangled resource,
 - Alice could *teleport* her photon to Bob
 - But long-distance entanglement is difficult to create
Quantum relay

Long-distance entanglement can be created by entanglement swapping

A Bell measurements on modes 2 and 4 entangles modes 1 and 4
Long-distance entanglement can be created by *entanglement swapping* but to succeed, all links must work simultaneously.

→ success probability still decreases exponentially with distance.
The role of memory

- But if we had quantum memory,
 - entanglement in a link could be stored…
 until entanglement in other links has been created, too.
 - Bell-measurement on adjacent quantum memories…
 will create the desired long-distance entanglement.
 - Alice can teleport her photon to Bob
• **This technology is called quantum repeater**
 • Initial idea: H. Briegel *et al.*, 1998
 • In application to EIT and quantum memory: L.M. Duan *et al.*, 2001
• Quantum memory for light is essential for long-distance quantum communications.
By the way…

- Quantum memory for light is also useful in quantum computing
 - Photon makes an excellent qubit… but does not like to stay put
 - Any computer, quantum or classical, needs memory
ELECTROMAGNETICALLY INDUCED TRANSPARENCY and memory for light
What is EIT?

Quantum interference effect in atoms with Λ-shaped level structure

What will happen to the signal field when we send it through an EIT medium?
Absorption of the signal field

Without control field

Narrow transparency window on resonance.
- Light propagates through an otherwise opaque medium.
Dispersion of the signal field

We can enormously reduce the group velocity
• Group velocity is proportional to the control field intensity

\[v_g(\omega) = \frac{c}{n(\omega) + \omega \frac{dn}{d\omega}} \]
EIT for quantum memory

- The idea
 - Turning the control field off will reduce the group velocity to zero

 - Quantum information contained in the pulse is stored in a collective atomic ground state superposition

 - Turning the control field back on will retrieve the pulse in the original quantum state
EIT for quantum memory
EIT in our lab

- Implementation in atomic rubidium
 - Ground level split into two hyperfine sublevels → a perfect Λ system
 - Control and signal lasers must be phase locked to each other at 6.8 GHz
EIT-based memory: practical limitations

- EIT window not perfectly transparent → part of the pulse will be absorbed
- Memory lifetime limited by atoms colliding, drifting in and out the interaction region
Storage of squeezed vacuum
The setup

Ti:Sapphire laser

6.8 GHz phase lock

Diode laser

Control field

Squeezed vacuum

AOM

Rb87 + Ne

Oven with cell

PBS

Chopper

OPA

SHG cavity

HD

LO
Storage of squeezed vacuum
The initial state

Quadrature data
Density matrix
Wigner function
Storage of squeezed vacuum
The retrieved state

- Maximum squeezing: 0.21±0.04 dB
- Squeezing observed in the retrieved state!
EIT for quantum memory: state of the art

The “holy grail”

- Store and retrieve arbitrary states of light for unlimited time
- State after retrieval must be identical to initial

Existing work

- L. Hau, 1999: slow light
- M. Fleischauer, M. Lukin, 2000: original theoretical idea for light storage
- M. Lukin, D. Wadsworth et al., 2001: storage and retrieval of a classical state
- A. Kuzmich et al., M. Lukin et al., 2005: storage and retrieval of single photons
- M. Kozuma et al., A. Lvovsky et al., 2007: memory for squeezed vacuum

Existing benchmarks

- Memory lifetime: up to milliseconds in rubidium, up to seconds in solids
- Memory efficiency: up to 50 % in rubidium, lower for solids
- Things get much worse when we attempt to store nonclassical states of light
QUANTUM COMPUTATION GATES

1. With EIT
2. Using conditional measurements
An optical C-NOT gate

• What we need

\[|H\rangle \text{ or } |V\rangle \]

\[|H\rangle \text{ or } |V\rangle \]

\[\text{ENTANGLING GATE} \]

\[|H\rangle |H\rangle \rightarrow |H\rangle |H\rangle \]

\[|H\rangle |V\rangle \rightarrow |H\rangle |V\rangle \]

\[|V\rangle |H\rangle \rightarrow |V\rangle |H\rangle \]

\[|V\rangle |V\rangle \rightarrow -|V\rangle |V\rangle \]
An optical C-NOT gate

- **How to implement this**

- **Nonlinear phase shift**
 \[|0\rangle|0\rangle \rightarrow |0\rangle|0\rangle\]
 \[|0\rangle|1\rangle \rightarrow |0\rangle|1\rangle\]
 \[|1\rangle|0\rangle \rightarrow |1\rangle|0\rangle\]
 \[|1\rangle|1\rangle \rightarrow -|1\rangle|1\rangle\]

- **Problem**
 - No materials that exhibit optical nonlinearity at the single-photon intensity level
QUANTUM COMPUTATION GATES

1. With EIT

2. Using conditional measurements
Nonlinear optics with EIT

- Basic idea: exploit steep dispersion curve to produce large cross-phase modulation

- Small change in 2-photon detuning → Large change in transmitted signal phase
N-type scheme

• EIT on signal field due to $|1\rangle|2\rangle|3\rangle$ $|4\rangle$

N-scheme

- EIT on **signal field** due to $|1\rangle|2\rangle|3\rangle$

- Off-resonant coupling of weak **induction field** produces Stark shift on $|1\rangle$
 - Changes 2-photon detuning of signal EIT
 - Affects phase of transmitted signal

N-scheme
[continued]

• Problem with N-scheme:
 • Only signal field experiences slowdown.
 • For pulses, this is a severe limitation.

• Solution:
 • Slow down induction pulse via another EIT system
 • Lukin, Imamoglu (2001): use another atomic species (e.g. 85Rb)
 • Wang, Marzlin, Sanders (2006): use double EIT in the same atom
QUANTUM COMPUTATION GATES

1. With EIT

2. Using conditional measurements
Non-deterministic phase gate: implementation with the beam splitter

- General beam splitter transformation

\[|m,n\rangle \rightarrow \sum_{j,k=0}^{m,n} \sqrt{(j+k)! (m+n-j-k)!} \binom{m}{j} \binom{n}{k} (-1)^k t^{n+j-k} r^{m-j+k} |m+n-j-k,j+k\rangle \]

Entangles input modes
Entanglement very complicated
Conditional measurement and/or postselection are required to implement computation gates

⇒ Linear-optical quantum computing is non-deterministic

Non-deterministic phase gate: implementation with the beam splitter

• Beam splitter with reflectivity $1/3$

\[
\begin{align*}
(r = \sqrt{\frac{1}{3}}, t = \sqrt{\frac{2}{3}}) \\
\end{align*}
\]

• Postselect on events in which the number of photons in the reflected channel is the same as that in the corresponding incident channel

• Neglect all other events

\[
\begin{align*}
|0,0\rangle &\rightarrow |0,0\rangle \\
|1,0\rangle &\rightarrow \frac{1}{3} |1,0\rangle \\
|0,1\rangle &\rightarrow -\frac{1}{3} |0,1\rangle \\
|1,1\rangle &\rightarrow \frac{1}{3} |1,1\rangle \\
\end{align*}
\]

Insert π phase shift into the right channel

\[
\begin{align*}
|0,0\rangle &\rightarrow |0,0\rangle \\
|1,0\rangle &\rightarrow \frac{1}{3} |1,0\rangle \\
|0,1\rangle &\rightarrow \frac{1}{3} |0,1\rangle \\
|1,1\rangle &\rightarrow \frac{1}{3} |1,1\rangle \\
\end{align*}
\]

Phase gate implemented!

召回 Non-deterministic (probability = 1/3 per photon)

→ Need to attenuate horizontal photons, too
Non-deterministic phase gate
[continued]

• **Full scheme**

 - attenuator for horizontal photons (transmission = 1/3)
 - beam splitter for vertical photons
 - π phase shift

• **Properties**

 - Works conditioned on detecting 1 photon in each output
 - Works with probability 1/9
 - Would be useful for quantum computing if we had non-demolition detection of photons
Non-deterministic phase gate
Experimental implementation

• The setup
 • Partially-polarizing beam splitters used to simplify mode-matching
 • Operation of the gate as a Bell-state analyzer verified

Another example: Conditional preparation of multi-photon entanglement

- **Greenberger-Horne-Zeilinger state**
 \[|HHV\rangle + |VVH\rangle\]

- **Conditioned on 4-photon coincidence** (postselected preparation)
 - Start from 2 pairs \(|HV\rangle - |VH\rangle\)
 - Photon that fires T comes from “first pair”
 - \(\Rightarrow\) first pair must be \(|HV\rangle\)
 - \(\Rightarrow\) second pair must be \(|VH\rangle\)
 - Photons transmitted and reflected from BS must be of opposite polarizations
 - Photons detected by \(D_1\) and \(D_2\) must be of the same polarization
 - The state incident on \(D_1, D_2\) and \(D_3\) is either \(|HHV\rangle\) or \(|VVH\rangle\)
 - These possibilities are indistinguishable
 \(\Rightarrow\) The output state is a coherent superposition

\(\Rightarrow\) We know the state has been generated only after it’s detected

D. Bouwmeester et al., PRL 82, 1345 (1999)
Thanks!

- Funding:
 - CIAR
 - NSERC
 - AIF
 - CFI
 - QuantumWorks

Ph.D. positions available

http://qis.ucalgary.ca/quantech/